統計学

【平均の種類】算術平均と加重平均の違いとは?今さら聞けない統計の基礎の基礎を分かりやすく解説!

2021年2月7日

今回は、代表値の一種である平均についてのお話です。

※代表値については、以下の記事をご覧ください!

統計基礎~代表値を分かりやすく解説!~

そもそも平均には以下の4種類があります。

平均の種類

・算術平均
・加重平均
・幾何平均
・調和平均

なかでも、基本的な平均としては算術平均加重平均がよく出てきます。

しかし、それらの違いを理解している人は案外少ないです。

そこで今回は、算術平均と加重平均の違いについて解説していきます。







算術平均とは

算術平均は、私たちがよく知っている

データの合計をデータの数で割る平均のことです。

別名、相加平均とも呼ばれます。

算術平均の例

算術平均の例をみていきましょう。

算術平均の例

(例題)以下の数字の平均は?
1、6、10、12、16
(答)→ (1+6+10+12+16) ÷ 5 = 9

これは簡単ですね。

単に「平均」という場合は、この算術平均のことを指すことが一般的です。

それでは次に、加重平均をみていきます。







加重平均とは

加重平均とは、個々のデータの重みを加味した平均のことです。

字面だけではイメージがつきにくいと思いますので、こちらも具体例とともに見ていきましょう。

加重平均の例

加重平均の例①

・チューハイ 500ml(アルコール度数5%)
・梅酒ロック 200ml(アルコール度数10%)

この両方を飲んだ場合、摂取したアルコールの平均度数は何%になるか。

この場合、5%と10%だから、平均は7.5%だ!

とはなりませんよね。

なぜならそれぞれ飲んでいる量が異なるからです。

もっと極端な話をしたほうが分かりやすいかもしれません。

次のような例もみていきましょう。

加重平均の例②

・ウイスキー  30ml (アルコール度数40%)
・チューハイ 1000ml (アルコール度数5%)

この両方を飲んだ場合、摂取したアルコールの平均度数は何%になるか。

罰ゲームで最初にウイスキーを一杯飲まされた酒に弱い大学生が、その後チューハイを飲み続けている風景が思い浮かびます。笑

この場合、摂取したアルコールの平均度数は、40%と5%だから22.5%だ!ともなりませんよね。

明らかにチューハイばかりたくさん飲んでいるので、そんなに平均度数は高くならないはずです。

このような場合、個々のデータの重みを加味しなければなりません。

今回のケースでは、お酒を飲んだ全ての量のうち、それぞれの度数のお酒を何ml摂取したのかがその重みとなります。

例1の場合、

チューハイに含まれるアルコールの量は、

500mlの5%なので、25ml

梅酒ロックに含まれるアルコールの量は、

200mlの10%なので、20ml

つまりアルコールの量の合計は、25+20=45mlとなります。

そして、飲んだ酒の量の合計は、500+200=700mlです。

そのため、45÷700≓0.064(=6.4%)となるのです。

例2の場合、

ウイスキーに含まれるアルコールの量は、

30mlの40%なので、12ml

チューハイに含まれるアルコールの量は、

1000mlの5%なので、50ml

つまりアルコールの量の合計は、12+50=62mlとなります。

そして、飲んだ酒の量の合計は、30+1000=1030mlです。

そのため、62÷1030≓0.06(=6%)となるのです。







加重平均が使われる場面

算術平均は多くの場面で使用される一般的な平均ですが、加重平均はどのような場面で使用されるのか。

先ほど例に挙げたお酒の平均アルコール度数だけでは分かりにくいかもしれないので、いくつかの例をご紹介します。

加重平均が使われる場面の例

・とある学校にて、A組、B組、C組の身長の平均を使って、学年全体の身長の平均を求める場合。
・とあるパン屋にて、「クロワッサン」と「カレーパン」、「サンドイッチ」の一日の平均売上を考える場合。
・とあるメーカーにて、様々な製品の平均の歩留まり率を計算する場合。

それぞれ、クラスによって人数が変わったり、パンの売れた個数が変わったりする可能性もあるので、データの重みを考える必要があります。

そのため、このような場面でも加重平均は使われるのです。

本記事が参考になれば幸いです。







↓この記事を読んだ方の多くは、以下の記事も読んでいます。

【徹底公開】たった3日で統計調査士を取得した勉強法をご紹介!【統計検定】

【これさえあれば大丈夫】統計検定2級の学習にオススメのコンテンツまとめ!

【知らなきゃ損!?】統計検定2級はペーパー試験よりもCBT受験一択!その理由とは!?







  • この記事を書いた人

Nissy

同志社大学卒。 人事・経理、コンサルを経験し、現在はWebマーケティングやSEOライター、ブログ運営など、幅広い活動をしています。 【保有資格】 統計検定2級 統計調査士 ビジネス統計スペシャリスト ウェブ解析士 GAIQ(GoogleAnalytics個人認定資格) 全日本SEO協会認定SEOコンサルタント

-統計学
-, ,

Copyright© Nissy BLOG , 2021 All Rights Reserved Powered by AFFINGER5.